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Summary. We show that in multi-sector optimal growth models, where the tech-
nology satisfies a simple reachability condition, infinite horizon programs which
satisfy the competitive conditions are optimal. We provide examples of a variety
of production models where the reachability condition is satisfied. An example
is also provided where the reachability condition is not satisfied and there are
competitive programs which are not optimal. The results of the paper are of
interest from the standpoint of decentralization in intertemporal economies.
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1 Introduction

We show that in multi-sector optimal growth models, where the technology sat-
isfies a simple reachability condition, competitive programs are optimal. We
elaborate on this below, beginning by placing the paper in the context of the
existing literature and putting it in perspective.
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The relation between decentralized decision making and optimal allocation
of resources, is a theme which is central to economics. It is the main thrust
of the theorems of welfare economics, which establish a link between price
systems and efficient allocation of resources in static or finite horizon planning
problems (Koopmans, 1957). It is prominent in the literature on informationally
decentralized mechanisms, following Hurwicz (1960). In capital theory, there is
an extensive literature, pioneered by Malinvaud (1953), on price systems which
characterize optimal allocations in intertemporal resource allocation problems
with no terminal date.

Recent years have witnessed a revival of interest in decentralization in the
context of intertemporal economies (see, for example, Hurwicz and Majumdar,
1988; Hurwicz and Weinberger, 1990; Majumdar, 1992). The central question
addressed may be stated as follows. Suppose that a class of environments and
evaluation criteria is given. Environment includes technology, tastes, and initial
resources; and we shall suppose that programs are evaluated according to the
discounted, or undiscounted, sum of utilities criterion. Is it possible to devise a
set of behavior rules for individual agents (producers and consumers) with the
following characteristics: that they involve separate decision making by producers
and consumers; are myopic, involving decisions over finite horizon; are based
upon private information and, perhaps, limited amounts of commonly available
information (such as the history of evolution, prices); and have the characteristic
that optimal allocations, and only the optimal ones, can be sustained by such
decentralized behavior?1

It is well known, from earlier literature on optimal growth theory2, that there
is a close connection between price systems and optimal allocations which, in
some respects, strongly resembles the relation between price systems and optimal
allocations found in static or finite horizon problems; however, there is also a
fundamental difference which stems from the infinite horizon nature of the prob-
lem. Optimal programs may be characterized by the existence of a sequence of
present value pricesp(t), at which the time path of capital stocksx(t) satisfies
two distinct sets of requirements: (a) support properties for the technology and
utility (see (2.1) and (2.2) in Section 2 for precise statements); and (b) some
appropriate kind of limiting behaviour of the present value of capitalp(t)x(t).3

The set of rules in (a), usually referred to as the “competitive conditions”, are
analogous to those in static optimality problems. These competitive conditions

1 In the language of Hurwicz (1972), the question posed is whether there is an allocation mech-
anism which is unbiased and non-wasteful. Private information refers to information specific to
individual agents: their own technology, utility function and the like.

2 See, for instance, Gale (1967), Weitzman (1973) and McKenzie (1986), for treatments of the
“Reduced Form Model”, where consumption is implicit and utilities are defined on initial and terminal
stocks of capital; and Peleg (1970),(1974), Peleg and Ryder (1972) and Peleg and Zilcha (1977) for
treatments of a model where consumption appears explicitly. Malinvaud’s (1953) paper deals with
efficient consumption programs; he is not concerned with programs maximizing a discounted or
undiscounted sum of utilities. For a unified treatment, see also Cass and Majumdar (1979).

3 The relevant condition when utilities are discounted is “p(t)x(t) converges to 0 ast → ∞”. If
utilities are not discounted, the condition is: “p(t)x(t) is bounded”.
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state that the quantities chosen along the optimal program are solutions to some
appropriate individual myopic optimization problem, such as, intertemporal profit
maximization or utility maximization, treating the associated pricesp(t) as para-
metric competitive market prices (see Gale and Sutherland, 1968), and, therefore,
may be regarded as being decentralizable, just as in the static case. However,
the requirement in (b), usually referred to as a “transversality condition”, has no
counterpart in static or finite horizon problems. It is observed that, being asymp-
totic in nature, it is not a myopic behavior rule for any individual decision maker
and, therefore, it is unclear how this condition can be verified in a decentralized
setting (see Koopmans, 1957; Kurz and Starrett, 1970; Hurwicz and Majumdar,
1988; Majumdar, 1988).

In a number of recent papers, several authors provide a fresh perspective
on decentralization in intertemporal economies (see Brock and Majumdar, 1988;
Dasgupta and Mitra, 1988; Hurwicz and Weinberger, 1990; Bala et al., 1991).4

In several instances, alternative characterizations of optimal programs are estab-
lished, whose distinguishing feature is that an asymptotic condition, such as (b),
is replaced by a finite horizon condition, which can be verified at each date by
myopic agents; and, therefore, optimal allocationsare decentralizable.5 More pre-
cisely, under fairly weak assumptions, (b) can be replaced by a variant of a rule
like that in Brock and Majumdar (1988), namely, (c) (p(t) − p∗)(x(t) − x∗) ≤ 0
for eacht , wherep∗ andx∗ denote, respectively, the prices and quantities along
a stationary optimal program.

Some remarks on the results sketched above, are now in order. First, in
comparison to characterizations involving an asymptotic condition like (b), as
well as in comparison to the competitive conditions, the new characterizations,
involving a condition like (c), typically require additional information about some
other optimal program, usually a stationary program and its supporting prices.
Second, while the latter involve only decentralized behaviour rules, separating
consumer and producer decisions, they are not entirely satisfactory from the
standpoint of incentive compatibility because, unlike the competitive conditions,
a rule like (c) above does not seem to correspond to any kind of individual
optimizing behaviour. Third, even from the standpoint of decentralization alone,
it may be observed that, while profit maximization in the aggregate is equivalent
to profit maximization at the level of individual firms, it is quite unclear how an
aggregative rule like (c) can be stated in an equivalent form which is possible to
verify at the level of individual firms.6

The remarks above highlight the fact that, while advances have been made in
our understanding of decentralization in infinite horizon intertemporal economies,

4 These, as well as several other papers on this topic, may be found in Majumdar (1992).
5 It may be noted in passing that quite aside from the point of view of decentralization, these char-

acterizations are also of interest from the point of view of a central planner’s problem of identifying
optimal and non-optimal programs. Since these new characterizations involve only period by period
conditions, a non-optimal program would always be revealed to be so, within some finite horizon, by
its failure to satisfy such a condition at some date. This, however, isnot true of the characterizations
involving a transversality condition since it is an asymptotic condition.

6 These points have been noted in the literature; see Majumdar (1988), for instance.
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the difference between finite and infinite horizon problems, typified by the ap-
pearance of a condition, like (b) or (c), over and above the competitive conditions,
continues to be a matter of considerable interest. As Malinvaud (1992) recently
observed, while it may not be justified to claim that the virtues of the price sys-
tem stand or fall depending on whether one looks at a finite or infinite horizon,
the validity of some central propositions in economics remains exposed to doubt
and the subject merits further investigation. Broadly speaking, it is a question
of interest as to what extent it is possible to weaken, or dispense with, condi-
tions such as those in (b) or (c) above, which (in addition to the competitive
conditions) are sufficient to ensure that a program is optimal.

The contribution of this paper lies in pointing out that for a fairly wide and
interesting class of models the competitive conditionsalone are sufficient to
ensure optimality; that is, any additional requirement is “superfluous”, whether
it be in the form of an asymptotic condition, such as a transversality condition,
like (b), or in an equivalent form, such as a myopic period by period condition,
like (c). More precisely, in general multi-sector models, in which the technology
satisfies a “reachability” property, infinite horizon programs, which satisfy the
competitive conditions, are optimal (Theorem 3.1).

We should remark on the sense in which conditions, other than the competitive
conditions, are superfluous. As mentioned earlier, a condition such as (b), or (c),
is both necessary and sufficientfor optimality of competitive programs; however,
what turns out to be true is that, in reachable technologies, it is not independent
of the competitive conditions, but rather is implied by them. Programs which are
competitivenecessarily satisfy the transversality condition(or its equivalent) and
therefore are optimal.7

The reachability property is crucial to establishing this result, and a few re-
marks regarding it may be helpful at this point. McFadden (1967) was the first to
formulate a notion of reachability. The notion of reachability used in this paper
is in the spirit of McFadden’s, but it is different.8 The reader should consult
the Reachability Condition (R) in Section 3 below for a precise statement, but
the essence of Condition (R) may be paraphrased as follows: the technological
production possibilities are such that, beginning with a capital stock from which
expansion of stocks are feasible, it is possible ( if need be through pure accu-
mulation of capital over a sufficiently long period) to attain the stocks along any
feasible program, at some future date.

In Section 4, we provide three examples (Examples 4.1 to 4.3), where the
Reachability Condition (R) is satisfied and our main result applies. The examples
show that the Reachability Condition is satisfied in a wide variety of multi-sector

7 If the utility function is strictly concave then this implies that from each initial stock there is a
unique competitive program which is the optimal program.

8 McFadden is mainly concerned with closed linear models in which there are no limiting primary
resources whereas we are concerned here with a model where there are limiting primary factors.
His reachability property would not hold in our framework. If one disregards the difference that his
condition is one on the consumption profiles along a program while ours is couched as a condition
on the technology and capital stocks along programs, the reachability condition employed here is
essentially a weaker version of McFadden’s.
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models. An example is also provided (Example 4.4) where the Reachability
Condition is not satisfied and there are competitive programs which are not
optimal. The example shows that something like Condition (R) is essential for
Theorem 3.1 to be valid.

An informal way of summarizing our main result is that competition works
in achieving optimal allocation of resources provided the technological charac-
teristics are right. This, perhaps, may be seen as somewhat of a departure from a
conventional view which holds that institutions and the legal structure of property
rights are the things which enable competition to work. However, there is an ex-
tensive tradition in growth models of emphasizing technological conditions under
which competition works. Solow (1956), uses capital labour substitution possi-
bilities to show stability of competitive growth programs; Uzawa (1961–62) and
Inada (1963) use capital-intensity conditions to show existence, uniqueness and
stability of competitive programs in two-sector models. Malinvaud’s Tightness
conditions (see Malinvaud, 1953, 1962), and the various technological conditions
of McFadden (1967) and Kurz (1969), which are used to show that efficiency
prices are well behaved, are also prominent instances. Kurz and Starrett (1970)
are interested in formulating technological properties of programs which, if they
are satisfied, imply efficiency9 of competitive programs. Our paper is very much
in this tradition of relating properties of competitive programs to technology.
While the evaluation criterion that Kurz and Starrett consider, as well as the
specific technological conditions they formulate, are different, the main theme of
their paper is similar to ours and the relationship between the two papers is of
interest and is discussed in detail in Section 5. It suffices to mention here only
that theirspecific resultsdo not apply to our problem, as shown by Example 5.1
in that section.

Two final remarks are in order. First, while the methods employed in The-
orem 3.1 can, with suitable modifications, deal with the case where utilities are
not discounted, we deal only with the case where the utilities are discounted.
Second, we are only interested in thesufficiencyside of the price characteriza-
tion of optimal programs. As is well known, thenecessityside, (the existence
of supporting prices for optimal programs) requires additional structure, in par-
ticular convexity. It is possible to verify, along the lines of Dasgupta and Mitra
(1990), that standard treatments, such as Weitzman (1973), would include our
model as a special case and provide the appropriate “converse” of Theorem 3.1.

2 Preliminaries

2.1 The model

The model is described by a triplet (Ω, w, δ), whereΩ, a subset ofRn
+ ×Rn

+, is the
technology set, w : Rn

+ → R is the periodwelfare function, andδ is thediscount
factor. Points inΩ are written as an ordered pair (x, y), wherex stands for the

9 For a precise definition of efficiency, see Section 5.
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initial stock of inputs andy stands for the final output which can be produced
with inputsx. We shall make the following assumptions10 on (Ω, w, δ).

(A.1) There exists a numberβ0 > 0 such that, if (x, y) ∈ Ω and‖x‖ ≥ β0, then
‖y‖ ≤ ‖x‖.

(A.2) If (x, y) ∈ Ω, x′ ≥ x andy ≥ y′ ≥ 0, then (x′, y′) ∈ Ω.
(A.3) There is ( ˆx, ŷ) ∈ Ω satisfyingŷ � x̂.
(A.4) w : Rn

+ → R is continuous.
(A.5) 0 < δ < 1.

Note that the technology set,Ω, is not assumed to be convex, and the welfare
function,w, is not assumed to be concave.

2.2 Programs

A program from ỹ in Rn
+ is a sequence〈x(t), y(t), c(t)〉 such thaty(0) = ỹ, and

(x(t), y(t + 1)) ∈ Ω, c(t) ≡ y(t) − x(t) ≥ 0 for all t ≥ 0.

We need the familiar preliminary result (see Dasgupta and Mitra, 1988) that
programs from ˜y are uniformly bounded by a number which depends only on
the initial stock ˜y andβ0.

Lemma 2.1. Under (A.1) and (A.2), if (x, y) ∈ Ω, then (i) ‖x‖ ≤ β0 implies
‖y‖ ≤ β0 and (ii) ‖y‖ ≤ Max{‖x‖, β0}.

Lemma 2.2. Under (A.1) and (A.2), if 〈x(t), y(t), c(t)〉 is a program from anỹy
in Rn

+ then(‖x(t)‖, ‖y(t)‖, ‖c(t)‖) ≤ (B, B, B), for all t ≥ 0, where the numberB
is defined byB = Max{‖ỹ‖, β0}.

In view of Lemma 2.2, (A.4) and (A.5), it is clear that for every pro-
gram 〈x(t), y(t), c(t)〉 from ỹ in Rn

+,
∑∞

0 δtw(c(t)) is absolutely convergent.
We may, therefore, define anoptimal program from ỹ in Rn

+ as a program
〈x∗(t), y∗(t), c∗(t)〉 from ỹ such that,

∑∞
0 δtw(c∗(t)) ≥ ∑∞

0 δtw(c(t)) for every
program〈x(t), y(t), c(t)〉 from ỹ.

A competitive programfrom ỹ in Rn
+ is a sequence〈x(t), y(t), c(t), p(t)〉 such

that 〈x(t), y(t), c(t)〉 is a program from ˜y, p(t) is in Rn
+ for t ≥ 0, and the two

inequalities below are satisfied:

δtw(c(t)) − p(t)c(t) ≥ δtw(c) − p(t)c for all c ≥ 0, t ≥ 0 (2.1)

p(t + 1)y(t + 1) − p(t)x(t) ≥ p(t + 1)y − p(t)x for all (x, y) ∈ Ω, t ≥ 0

(2.2)

A competitive program is said to satisfy thetransversality conditionif
limt→∞ p(t) x(t) = 0. It is well known that a competitive program which satisfies

10 For x, y in Rn, x ≥ y meansxi ≥ yi for i = 1, . . . , n; x > y meansx ≥ y andx /= y; x � y
meansxi > yi for i = 1, . . . , n. For x in Rn, the sum norm ofx (denoted by‖x‖) is defined by
‖x‖ =

∑n
i =1

|xi |.
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the transversality condition is optimal. We state this, in Theorem 2.1 below, for
ready reference.

Theorem 2.1. Under (A.1), (A.2), (A.4) and (A.5), if 〈x(t), y(t), c(t), p(t)〉 is a
competitive program from anỹy in Rn

+ andlimt→∞p(t)x(t) = 0 then〈x(t), y(t), c(t)〉
is an optimal program from̃y.

3 Optimality of competitive programs under reachability

In this section we prove the main theorem of this paper. We first introduce the
reachability condition below. From now on fix a particular (x, y) in Ω with y � x
(whose existence is assumed in (A.3)) and denote it by (ˆx, ŷ).

Reachability Condition (R)

Given any ˜y in Rn
+ and a program〈x(t), y(t), c(t)〉 from ỹ, there is an integer

R ≥ 0 and a program〈x′(t), y′(t), c′(t)〉 from ŷ such thaty′
R ≥ yR.

We first need a basic property of competitive programs.

Lemma 3.1. Let 〈x(t), y(t), c(t), p(t)〉 be a competitive program from anỹy in
Rn

+ . Let (x, y, c) be any triple satisfying:(x, y) ∈ Ω and c≥ 0. Then, for t≥ 0,

δtw(c(t)) + p(t + 1)y(t + 1) − p(t)y(t) ≥ δtw(c) + p(t + 1)y − p(t)(x + c) (3.1)

Proof. Sincec ≥ 0, using (2.1), we have fort ≥ 0

δtw(c(t)) − p(t)c(t) ≥ δtw(c) − p(t)c (3.2)

Since (x, y) ∈ Ω, using (2.2), we have fort ≥ 0

p(t + 1)y(t + 1) − p(t)x(t) ≥ p(t + 1)y − p(t)x (3.3)

Adding (3.2) and (3.3), we have fort ≥ 0

δtw(c(t)) − p(t)c(t) + p(t + 1)y(t + 1) − p(t)x(t) ≥ δtw(c)

− p(t)c + p(t + 1)y − p(t)x (3.4)

Sincec(t) + x(t) = y(t) for t ≥ 0, we get (3.1) from (3.4). ut
Theorem 3.1. Under (A.1) to (A.5) and condition (R), if〈x(t), y(t), c(t), p(t)〉
is a competitive program from anỹy in Rn

+ , then〈x(t), y(t), c(t)〉 is an optimal
program fromỹ.

Proof. Define ĉ = 0 and apply (3.1) to the triple ( ˆx, ŷ, ĉ), to get,

δtw(c(t)) + p(t + 1)y(t + 1) − p(t)y(t) ≥ δtw(ĉ) + p(t + 1)ŷ − p(t)(x̂ + ĉ)

= δtw(0) + p(t + 1)ŷ − p(t)x̂ = δtw(0) + p(t + 1)(ŷ − x̂) + p(t + 1)x̂ − p(t)x̂

(3.5)



572 S. Dasgupta and T. Mitra

Then for anyT ≥ 2,

T−1∑
0

δtw(c(t)) + p(T)y(T) − p(0)y(0)

≥
T−1∑

0

δtw(0) +
T−1∑

0

p(t + 1)(ŷ − x̂) + p(T)x̂ − p(0)x̂ (3.6)

=
T−1∑

0

δtw(0) +
T−2∑

0

p(t + 1)(ŷ − x̂) + p(T)ŷ − p(0)x̂

Consider the sequence〈x′′(t), y′′(t), c′′(t)〉 defined by (x′′(t), y′′(t), c′′(t)) =
(x(t + T), y(t + T), c(t + T)) for t ≥ 0. Then, clearly,〈x′′(t), y′′(t), c′′(t)〉 is
a program fromy(T). By condition (R), there is a program〈x′(t), y′(t), c′(t)〉
from ŷ andR ≥ 0 such that

y′(R) ≥ y′′(R) = y(T + R) (3.7)

Applying (3.1) to (x′(s), y′(s + 1), c′(s)) we have, fors ≥ 0,

δT+sw(c(T + s)) + p(T + s + 1)y(T + s + 1) − p(T + s)y(T + s)

≥ δT+sw(c′(s)) + p(T + s + 1)y′(s + 1) − p(T + s)(x′(s) + c′(s))

= δT+sw(c′(s)) + p(T + s + 1)y′(s + 1) − p(T + s)y′(s) (3.8)

In what follows it is understood that ifR = 0 then whenever a sum from 0
to R − 1 appears it is, by convention, taken to be equal to 0.

Summing froms = 0 to s = R − 1, (3.8) yields

R−1∑
0

δT+sw(c(T + s)) + p(T + R)y(T + R)

− p(T)y(T) ≥
R−1∑

0

δT+sw(c′(s)) + p(T + R)y′(R)− p(T)y′(0)

(3.9)

Using (3.7),p(t) ≥ 0 for all t ≥ 0, andy′(0) = ŷ in (3.9) we get

R−1∑
0

δT+sw(c(T + s)) − p(T)y(T) ≥
R−1∑

0

δT+sw(c′(s)) − p(T)ŷ (3.10)

Using (3.6) and (3.10), forT ≥ 2, we get

T+R−1∑
0

δtw(c(t)) − p(0)y(0)

≥
T−1∑

0

δtw(0) +
R−1∑

0

δT+sw(c′(s))

+
T−2∑

0

p(t + 1)(ŷ − x̂) − p(0)x̂

(3.11)
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Since〈x(t), y(t), c(t)〉 is a program from ˜y, by Lemma 2.2,‖c(t)‖ ≤ B, where
B = max{β0, ‖ỹ‖}. Since〈x′(t), y′(t), c′(t)〉 is a program from ˆy, ‖c′(t)‖ ≤ B1,
whereB1 = max{β0, ‖ŷ‖}. Define B∗ = max{B1, B}, and B2 = Max

0≤c≤B∗e
|w(c)|

wheree = [1, 1, . . . , 1] is in Rn.
Using this notation, from (3.11), we get

T−2∑
0

p(t + 1)(ŷ − x̂) ≤
T+R−1∑

0

δtw(c(t)) −
T−1∑

0

δtw(0)

−
R−1∑

0

δT+sw(c′(s)) + p(0)(x̂ − y(0))

≤ 3B2(1 − δ)−1 + p(0)(x̂ − y(0)) < ∞
We have established that, for anyT ≥ 2,

∑T−2
0 p(t + 1)(ŷ − x̂) < ∞. Since

ŷ − x̂ � 0, andp(t) ≥ 0, we can infer that
∑∞

0 p(t) < ∞ and, consequently,
p(t) → 0 as t → ∞. Sincex(t) is bounded (by Lemma 2.2),p(t)x(t) → 0 as
t → ∞. Thus, by Theorem 2.1,〈x(t), y(t), c(t)〉 is optimal. ut

4 Examples

4.1 Summary descriptions

In this section we provide four examples. The first three (in Subsection 4.1
below) are examples where the assumptions on the technology (A.1)–(A.3), and
the Reachability Condition (R) is satisfied and Theorem 3.1 applies (whenever
the assumptions on the welfare function (A.4) and the discount factor (A.5) are
met). The examples show that Condition (R) can be satisfied in a wide variety of
production models. In all of the examples there is only one exogenously given
(non-produced or primary) factor of production (labor). However, as will be
evident from the detailed descriptions of the examples to follow, this is not an
essential feature and, with obvious modifications, more than one primary factor
may be allowed.

In Example 4.1, the production side is the Simple Leontief Model (see Gale,
1960) where, corresponding to each good, there is one fixed coefficient produc-
tion process. It does not allow for choice of technique, nor for the possibility
of joint production. Example 4.2 does allow for choice of technique and joint
production. It is a General Linear Model with a finite number of fixed coefficient
production processes (see Gale, 1960). Example 4.3 is a non-linear production
model allowing for variable coefficients. It is a two-sector model where the tech-
nology in each sector is described by a smooth neoclassical production function.

In Example 4.1, provided the technology satisfies the productivity assump-
tion (A.3) of Section 2, the Reachability Condition (R) is satisfied. In Examples
4.2 and 4.3, stronger productivity assumptions are made to ensure Reachabil-
ity. No attempt is made to characterize Condition (R) in terms of technological
coefficients.
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That some condition like (R) is needed, in a general model, in addition
to the assumptions (A.1) to (A.5), to obtain the conclusion of Theorem 3.1,
is demonstrated by the final example (Example 4.4 in Subsection 4.3 below).
The example is a two-sector linear model with two processes which allow joint
production. Here, the assumptions (A.1) to (A.5) of Section 2 are satisfied but
Condition (R) is not satisfied. We construct a program which is shown to be
competitive but not optimal.

4.2 Examples of models where the reachability condition is satisfied

Example 4.1: Simple leontief model

In this example,Ω is generated by a square matrixA of order n and a vector
a in Rn (see (L.1) below). As before,w : Rn

+ → R denotes the welfare function
andδ the discount factor. The following assumptions are made:

(L.1) There is ann × n real matrixA = [aij ], i = 1, . . . , n, j = 1, . . . , n and a
vectora = (a1, . . . , an) in Rn such that for any (x, y) in Rn × Rn, (x, y) ∈ Ω iff

x ≥ Ay, x ≥ 0, y ≥ 0, anday ≤ 1. (4.1)

(L.2) A ≥ 0, that is,aij ≥ 0 for all i , j = 1, . . . , n; a � 0.
(L.3) A is productive; that is, there is ˆy � 0 such that ˆy � Aŷ andaŷ ≤ 1.

Here,aij and aj are, respectively, the amounts of thei th good and labor which
are required to produce one unit of output of thej th good.

Lemma 4.1. (a) If Ω satisfies(L.1) to (L.3) then Ω satisfies(A.1) to (A.3) of
Section 2 and, in particular, if(x, y) ∈ Ω then y ≤ β0e, whereβ0 = 1/ mini ai

and e= [1, . . . , 1]; (b) If Ω satisfies(L.1) and (L.2), thenΩ satisfies(A.3) iff it
satisfies(L.3).

Proof. (a) Suppose thatΩ satisfies (L.1) to (L.3). Then clearlyΩ satisfies (A.2).
Sincea � 0, we may define a numberβ0 by β0 = 1/ Min

i
{ai }. Then, it follows

from (4.1) that for all (x, y) ∈ Ω, we must havey ≤ β0e. This establishes that
Ω satisfies (A.1). Finally, define ˆx by x̂ = Aŷ. Then it is clear that ( ˆx, ŷ) ∈ Ω
and, using (L.3), ˆx � ŷ. This shows that (A.3) is also satisfied. (b) Suppose
that Ω satisfies (L.1) and (L.2). Then it is obvious from the definitions that ifΩ
satisfies (A.3) then it also satisfies (L.3). Together with part (a), this establishes
part (b). ut

Remark 4.1. It is well known (see Gale, 1960) that ifA is productive andA ≥ 0
then At → 0 as t → ∞, and (I − A)−1 =

∑∞
0 At , where, by convention,A0 is

the identity matrixI .
We now show that under (L.1)–(L.3), the Reachability Condition (R) is sat-

isfied.

Lemma 4.2. Under (L.1) to (L.3), if 〈x(t), y(t), c(t)〉 is a program from anŷy in
Rn

+ then there is a program〈x′(t), y′(t), c′(t)〉 from ŷ and an integer R≥ 0 such
that y′(R) = y(R).
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Proof. Suppose that〈x(t), y(t), c(t)〉 is a program from ˜y in Rn
+. From Lemma 4.1,

we havey(t) ≤ β0e for all t ≥ 1. Fromŷ � 0 andAt → 0 (see Remark 4.1) we
have an integerR ≥ 2 such that

ARβ0e � ŷ (4.2)

Now define the sequence〈x′(t), y′(t), c′(t)〉 as follows:y′(0) = x′(0) = ŷ,

x′(t) = AR−t y(R) = y′(t) for 1 ≤ t ≤ R − 1 (4.3)

x′(t) = x(t) for all t ≥ R, y′(t) = y(t) for all t ≥ R, c′(t) = y′(t) − x′(t) for all
t ≥ 0.

Clearly x′(t) ≥ 0, andy′(t) ≥ 0 for all t ≥ 0, c′(t) = 0 for 0 ≤ t ≤ R − 1
and c′(t) = c(t) ≥ 0 for t ≥ R. Also, by definition,y′(0) = ŷ; so, to verify that
〈x′(t), y′(t), c′(t)〉 is a program from ˆy, we need only to verify that

Ay′(t + 1) ≤ x′(t) for all t ≥ 0 (4.4)

and that
ay′(t) ≤ 1 for all t ≥ 1 (4.5)

Clearly (4.4) and (4.5) hold for allt ≥ R, because, for sucht , the sequence
〈x′(t), y′(t), c′(t)〉 coincides with the given sequence〈x(t), y(t), c(t)〉 which sat-
isfies these inequalities, being a program.

Now, sinceA ≥ 0, we gety′(1) = AR−1y(R) ≤ AR−1β0e. So, using (4.2),
Ay′(1) ≤ ARβ0e � ŷ = x′

0. This establishes (4.4) fort = 0. If 1 ≤ t < R − 1,
then, using (4.3), we getAy′(t + 1) = AAR−(t+1)y(R) = x′(t). This verifies (4.4)
for t satisfying 1≤ t < R − 1. Finally, for t = R − 1, Ay′(t + 1) = Ay′(R) =
Ay(R) = AR−(R−1)y(R) = x′(R − 1) = x′(t). This verifies that (4.4) holds for all
t ≥ 0.

We will now verify that (4.5) holds along〈x′(t), y′(t), c′(t)〉 for 1 ≤ t ≤ R−1.
Since〈x(t), y(t), c(t)〉 is a program,Ay(t + 1) ≤ x(t) ≤ y(t) for t ≥ 0. Thus, for
any integerθ ≥ 1, Aθy(t + θ) = Aθ−1(Ay(t + θ)) ≤ Aθ−1y(t + θ − 1) for all t ≥ 0.
Applying this repeatedly, and noting thatA◦ = I , we have

Aθy(t + θ) ≤ y(t) for all t ≥ 0, and any integerθ ≥ 1 (4.6)

So, for 1 ≤ t ≤ R − 1 we have, from (4.3), after settingθ = R − t in (4.6),
y′(t) = AR−t y(R) ≤ y(t). Sincea ≥ 0 and ay(t) ≤ 1 for all t ≥ 1, we have
ay′(t) ≤ ay(t) ≤ 1 for 1 ≤ t ≤ R − 1. This verifies (4.5) and completes the
proof of the lemma. ut

Example 4.2: General linear model

In this example the technology setΩ is defined by twon × m matricesA andB
and a vectora in Rm. The following assumptions are made:

(GL.1) There are twon×m matricesA = [aij ], andB = [bij ], i = 1, . . . , n, j =
1, . . . , m, and a vectora = (a1, . . . , am) in Rm such that (x, y) is in Ω iff there
is z in Rm satisfying
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x ≥ Az ≥ 0, Bz ≥ y ≥ 0, z ≥ 0, az ≤ 1 (4.7)

(GL.2) A ≥ 0, B ≥ 0; a � 0
Here zj denotes the level of thej th activity or process,aij is the amount of the
i th good required,aj is the amount of labor required, andbij is the output of the
i th good produced, per unit of activityj . It is clear that, whenΩ satisfies (GL.1),
corresponding to any program〈x(t), y(t), c(t)〉 from ỹ in Rn

+, we can associate
a sequence〈z(t)〉 such that, for eacht ≥ 0, (x, y, z) = (x(t), y(t + 1), z(t + 1))
satisfies (4.7). We shall say thatz(t) is the associated sequence of activity levels
along the given program. In the remainder of this section it would be convenient
to choose the normalization for the processes in whicha = e = [1, . . . , 1].11

We need to make a strong form of the productivity assumption ((GL.3) be-
low). Let S = {z in Rm|z ≥ 0 and

∑m
j =1 zj = az = 1} be the unit simplex in

Rm.
(GL.3) (Strong Productivity) For eachj = 1, . . . , m there isπj in S satisfying

Bπj � aj .
Assumption (GL.3) says that corresponding to the input stock (vector) of any

basic process there is a strictly larger feasible output, producible fromsomeinput
stock.

It is posssible to show that under assumptions (GL.1) to (GL.3), the technol-
ogy setΩ satisfies (A.1) to (A.3) as well as the Reachability Condition (R).12

Example 4.3: A non-linear model

Let Xij denote the amount of thei th produced good used as input in industryj ,
wherei /= j ; let Lj denote the amount of labor used, andYj the output produced,
in industry j . The production functions of the two industries are denoted by
F 1(X21, L1) andF 2(X12, L2). In this example the technology setΩ is defined by

Ω = {(X1, X2, Y1, Y2) ∈ R4
+| there is a (X12, X21, L1, L2, Y1, Y2) ∈ R6

+

satisfyingY1 ≤ F 1(X21, L1), Y2 ≤ F 2(X12, L2), X12 ≤ X1, X21 ≤ X2,

andL1 + L2 ≤ 1}
Assume that:

(NL.1) For eachj = 1, 2, F j is twice continuously differentiable, concave and
homogeneous of degree 1.
(NL.2) For eachj = 1, 2, F j is non-negative and has non-negative partial
derivatives; furthermore,F j (Xij , 0) = 0 = F j (0, Lj ); F j (Xij , Lj ) > 0 when
Xij > 0, Lj > 0.

Define the normalized production functionsf j by f j (Xij ) = F j (Xij , 1) for j =
1, 2. Assume that, in addition to (NL.1) and (NL.2),Ω satisfies the following
productivity assumption:

11 The unit levels of the processes are being defined so that labor required per unit is 1. This is
simply a matter of convenience, and not a restriction beyond assuming that labor required in each
process is strictly positive (see (GL.2)).

12 The proofs are lengthy, and consequently omitted; they are available upon request from the
authors.
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(NL.3) For eachj = 1, 2, there is a point ¯xj at whichf j (.) reaches its maximum
value, denoted by ¯yj ; moreover (¯y1/x̄2) > (x̄1/ȳ2).13

It is possible to show that under (NL.1)–(NL.3), assumptions (A.1) to (A.3),
as well as the Reachability Condition (R) are satisfied.14

4.3 Example where the reachability condition is not satisfied

We now provide an example15 of a two good model with fixed coefficient produc-
tion processes, allowing joint production but with the number of activities equal
to the number of goods, where the Reachability Condition (R) fails to hold and
there are competitive programs which are not optimal. The example illustrates
that the Reachability Condition fairly precisely delineates the class of technolo-
gies, within the class of General Linear Models, for which the transversality
condition can be dispensed with.

Example 4.4: Choose anyγ satisfying 0< γ < 1. Definew : R2
+ → R by

w(c1, c2) = cγ
1 + c2 for c = (c1, c2) ≥ 0

DefineΩ as in (GL.1) of Example 4.2 where the matricesA, B, anda are chosen
as follows:

A =

[
3 1
1 3

]
, B =

[
3 2
2 3

]
, a = (1, 1)

Define ẑ = [0.5, 0.5]. Then Aẑ = [2, 2] and Bẑ = [2.5, 2.5]. Define (x̂, ŷ) =
(Aẑ, Bẑ); then (x̂, ŷ) satisfies (A.3). Take anyδ satisfying 0< δ < 1. Then, it is
clear that (A.1)–(A.5) hold.

Now, define a sequence〈x(t), y(t), c(t), z(t)〉 by z(t) = [e(t), 1−e(t)], y(t) =
Bz(t), x(t) = Az(t + 1), c(t) = [1, 0] for t ≥ 0, where we usee(t) to denote
(1/2t ), to simplify notation.

We shall first verify that〈x(t), y(t), c(t)〉 is a program from [3, 2]. It is
straightforward to check thaty(0) = [3, 2], and (x(t), y(t + 1)) is in Ω for t ≥
0. It remains to check thaty(t) − x(t) = c(t) for t ≥ 0. Note thaty(t) =
[3e(t) + 2(1− e(t)), 2e(t) + 3(1− e(t))] = [2 + e(t), 3 − e(t)] for t ≥ 0. Also,
x(t) = [3e(t +1)+(1−e(t +1)), e(t +1)+3(1−e(t +1))] = [1+2e(t +1), 3−2e(t +1)] =
[1 + e(t), 3 − e(t)] for t ≥ 0. Thus,y(t) − x(t) = [1, 0] = c(t) for t ≥ 0.

Next, we define prices (p(t), w(t)) = (p1(t), p2(t), w(t)) supporting the pro-
gram. Letp2(0) = Max{3γ, 1}, and define fort ≥ 0:

13 (NL.3) says that the production functions, with labor requirement normalized to equal unity, are
bounded above and attain their upper bounds; furthermore, the Simple Leontief Model composed of
the two normalized processes, where the respective upper bounds are attained, satisfies the produc-
tivity condition (see (L.3) in Example 4.1) expressed in the form of the Hawkins-Simon condition
(see Hawkins and Simon, 1949).

14 Details are available upon request from the authors.
15 See Dasgupta and Mitra (1993) for additional examples of interest.
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p1(t) = δtγ, p2(t + 1) = p1(t + 1) − 2p1(t) + 2p2(t) (4.8)

wt = 5p1(t + 1) − 7p1(t) + 3p2(t) (4.9)

We verify that (p(t), w(t)) ≥ 0 for t ≥ 0. Notice thatp1(t) > 0 for t ≥ 0 by
(4.8). Also, by (4.8), we have

(p2(t + 1) − p1(t + 1)) = 2(p2(t) − p1(t)) for t ≥ 0 (4.10)

Since (p2(0) − p1(0)) ≥ 3γ − γ = 2γ > 0, we obtain

(p2(t) − p1(t)) ≥ 2t (2γ) for t ≥ 0 (4.11)

Thusp2(t) > 0 for t ≥ 0. Also, for t ≥ 0, w(t) = 5p1(t + 1) − 7p1(t) + 3p2(t) >
3(p2(t) − p1(t)) − 4p1(t) ≥ 6γ − 4γ (by using (4.11) = 2γ > 0.

We check now that〈x(t), y(t), c(t), p(t)〉 satisfies the profit-maximizing con-
dition (2.2). For t ≥ 0, we havep(t + 1)B − p(t)A − w(t)a = (3p1(t + 1) +
2p2(t + 1)− 3p1(t) − p2(t) −w(t), 2p1(t + 1) + 3p2(t + 1)− p1(t) − 3p2(t) −w(t)) =
(3p1(t + 1) + 2(p1(t + 1) − 2p1(t) + 2p2(t)) − 3p1(t) − p2(t) − w(t), 2p1(t + 1) +
3(p1(t + 1) − 2p1(t) + 2p2(t)) − p1(t) − 3p2(t) − w(t)) = (5p1(t + 1) − 7p1(t) +
3p2(t)−w(t), 5p1(t + 1)−7p1(t) + 3p2(t)−w(t)) = (0, 0) for all t ≥ 0, using (4.8)
and (4.9). It is now straightforward to verify, using (4.7), that for any (x, y) in Ω
andt ≥ 0, p(t + 1)y − p(t)x ≤ w(t) = p(t + 1)y(t + 1)− p(t)x(t). This establishes
(2.2).

Finally, we check that〈x(t), y(t), c(t), p(t)〉 satisfies the condition (2.1). To
this end, note that by using (4.11), (p2(t) − p1(t)) ≥ 4γ for all t ≥ 1. This yields
p2(t) ≥ 3γ for all t ≥ 0, and so (p2(t)−2p1(t)) ≥ (p2(t)−2p1(0)) ≥ (3γ −2γ) =
γ > 0. Using this information in (4.8) yieldsp2(t + 1) = p1(t + 1) + (p2(t) −
2p1(t)) + p2(t) > p2(t) for t ≥ 0, and sincep2(0) ≥ 1, we infer thatp2(t) ≥ 1 for
t ≥ 0.

Now, for any t ≥ 0, and anyc in R2
+, δ

tw(c) − p(t)c = [δt (c1)γ − p1(t)c1] +
[δt c2 − p2(t)c2] ≤ [δt (c1)γ − p1(t)c1] (using p2(t) ≥ 1 ≥ δt for t ≥ 0) =
δt [(c1)γ − (c1(t))γ ] + [δt (c1(t))γ − p1(t)c1(t)] + p1(t)[c1(t) − c1] ≤ p1(t)[c1 −
c1(t)]+ [δt (c1(t))γ −p1(t)c1(t)]+ p1(t)[c1(t)−c1] (using concavity of the function
cγ on R+, c1(t) = 1, andp1(t) = δtγ for t ≥ 0) = [δt (c1(t))γ − p1(t)c1(t)] =
δtw(c(t))−p(t)c(t) (sincec2(t) = 0 for t ≥ 0). This verifies (2.1), and establishes
that 〈x(t), y(t), c(t), p(t)〉 is a competitive program.

Finally, we verify that the program〈x(t), y(t), c(t)〉 is not optimal. To see
this, definey′(0) = y(0), c′(0) = c(0), (x′(t), y′(t + 1)) = (x̂, ŷ) for t ≥ 0, and
c′(t + 1) = [0.5, 0.5] for t ≥ 0. Then, clearly,〈x′(t), y′(t), c′(t)〉 is a program
from [3, 2]. Also,

∞∑
t=0

δtw(c′(t)) = 1 +
∞∑
t=1

δt [(1/2γ) + (1/2)] > 1 +
∞∑
t=1

δt =
∞∑
t=0

δt =
∞∑
t=0

δtw(c(t))

So, 〈x(t), y(t), c(t)〉 is not optimal from [3, 2].
It follows, of course, that in this example the Reachability Condition (R) is

not satisfied. This may also be verified directly.
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We conclude this section by noting that the example is “borderline” in the
following sense. Suppose we introduce a perturbationε > 0, in the output matrix
B of the example, as follows: for eachj = 1, 2, the output of thej th good from
the j th activity is ε more compared to before, whereε is allowed to be as small

as we wish. So the newB matrix is given by

[
3 + ε 2

2 3 +ε

]
. Then it may

be verified that the example becomes a special case of Example 4.2, because
the Strong Productivity assumption (GL.3) will be satisfied. As a consequence,
Condition (R) will be satisfied and all competitive programs will be optimal in
the perturbed example.

5 Locally expandable and contractable programs and reachability

In this section, we relate the results of this paper to the contribution of Kurz and
Starrett (1970).16

It will be easier to conduct such a discussion if we first define a few
concepts involved in their paper. A program〈x(t), y(t), c(t)〉 from ỹ in Rn

+ is
called efficient if there is no other program〈x′(t), y′(t), c′(t)〉 from ỹ satisfying
c′(t) ≥ c(t) for all t ≥ 0 and c′(t) > c(t) for somet ≥ 0. Further, define a
sequence〈x(t), y(t), c(t), p(t)〉 to be anintertemporal profit-maximizing program
if 〈x(t), y(t), c(t)〉 is a program fromy(0), p(t) is in Rn

+ for t ≥ 0, and condition
(2.2) is satisfied.17

The objective of Kurz-Starrett’s paper is to obtain technological conditions
under which intertemporal profit-maximizing programs satisfy the transversality
condition limt→∞ p(t)x(t) = 0, and are, therefore, (using the basic result of
Malinvaud, 1953) efficient. The theme of their paper is clearly similar to ours,
since we seek to obtain conditions on the technology under which competitive
programs satisfy the transversality condition and are, therefore, optimal.18

The specific technological conditions proposed by Kurz-Starrett can be refor-
mulated in the context of the General Linear Model19 (that is, whenΩ satisfies
(GL.1) and (GL.2) of Section 4) as follows.

16 Since writing this paper, it has come to our attention that in the literature on money and overlap-
ping generations model there have appeared papers which address issues of dynamic inefficiencies in
such models and are therefore similar in spirit to Kurz-Starrett. The problems and results, however,
are different and have no direct bearing on our problem. The interested reader may consult Rhee
(1991) and references cited there.

17 Kurz-Starrett call such programscompetitive. Since we use the termcompetitiveto denote pro-
grams with price supports, which satisfy both (2.1) and (2.2), it is useful for our discussion to
designate programs as intertemporal profit maximizing when they are required to satisfy only (2.2).

18 Kurz and Starrett (1970, p. 576) observe “If a technology is sufficiently special, then all pro-
grammes may satisfy these conditions and thus all competitive programmes will be efficient”. Whether
there actually exist technologies in whichall intertemporal profit maximizing programs are efficient,
is an open question. In this respect, our exercise is more complete: we give several examples of
technologies in which our Reachability Condition (R) is satisfied byall competitive programs, which
are consequently also optimal.

19 The production side of the model in Section 2 is a special case of the very general framework
of Kurz-Starrett.
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Condition LE : A program〈x(t), y(t), c(t)〉 from ỹ in Rn
+ is Locally Expandable

if there is anε > 0, an integerT ≥ 0 and a program〈x′(t), y′(t), c′(t)〉 from
somey′ in Rn

+ such that

y′(t) = (1 + ε)y(t) for all t > T (5.1)

c′(t) = (1 + ε)c(t) for all t > T (5.2)

az′(t) = az(t) for all t > T (5.3)

wherez(t) andz′(t), respectively, are the activity levels along the two programs.

Condition LC : A program〈x(t), y(t), c(t)〉 from ỹ in Rn
+ is Locally Contractable

if there isε > 0 andα > 0 such that for eacht ≥ 0 there isz′(t +1) ≥ 0 satisfying

Bz′(t + 1) ≥ y(t + 1) (5.4)

Az′(t + 1) ≤ (1 − α)x(t) (5.5)

az′(t + 1) ≤ 1 + ε (5.6)

Consider, now, a competitive program〈x(t), y(t), c(t), p(t)〉. If the program
〈x(t), y(t), c(t)〉 is locally expandable or locally contractable, then by the results
of Kurz and Starrett (1970), the transversality condition limt→∞ p(t)x(t) = 0
would be satisfied. Consequently, by Theorem 2.1, it would be optimal.

We now provide an example (essentially the Simple Leontief Model discussed
in Section 4) in which our Reachability Condition (R) is satisfied and so, by
Theorem 3.1, all competitive programs are optimal. But, here, the results of Kurz-
Starrett cannot be applied to obtain this conclusion, because competitive programs
in this framework are neither locally expandable nor locally contractable.

Example 5.1.Let the production side be the Simple Leontief Model (see Example
4.1 in Section 4); that is, assume thatΩ satisfies (L.1) to (L.3). Note that this
may be viewed as a special case of the General Linear Model (see the description
of Ω in (GL.1) and (GL.2) of Example 4.2) with the restriction that the output
matrix B = I and the vector of activity levelsz is identified with the output
vectory. Assume also thatw : Rn

+ → R satisfies:

(L.4) (a) w is continuous and concave onRn
+ with w(0) = 0 < w(e) where

e = [1, . . . , 1] in Rn.
(b) w(c′) ≥ (>)w(c) for c′ ≥ (>)c.
(c) (w(λe)/λ) → ∞ asλ → 0.

Clearly, (L.4) ensures that (A.4) is satisfied. An example of w satisfying (L.4) is

w(c1, . . . , cn) =
n∑

i =1

cγi
i where 1> γi > 0 for i = 1, . . . , n.

(L.5) (a) 0< δ < 1
(b) For eachj = 1, . . . , n, the column vectoraj > 0.
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The condition (L.5)(b) is standard for Leontief technologies. It says that to pro-
duce (a positive amount of) any goodj , (j = 1, . . . , n) one needs a positive
amount ofsomegood i (i = 1, . . . , n), apart from the labor requirement.

It may be noted at this point that the example is a special case of the frame-
work considered in Dasgupta and Mitra (1990, Section 3). Thus, there is an
optimal program from every ˜y in Rn

+, and there is a competitive program from
every ỹ in Rn

++.
Let 〈x(t), y(t), c(t), p(t)〉 be any competitive program from ˜y � 0. We claim

that the program〈x(t), y(t), c(t)〉 can be neither Locally Expandable nor Locally
Contractable.

To establish the claim, we first note a few basic properties of the competitive
program. Since, by our analysis of Section 4, the program satisfies the Reach-
ability Condition (R), it is optimal (by Theorem 3.1). Letting〈z(t)〉 denote the
activity level sequence associated with the program, we havez(t + 1) ≥ y(t + 1),
Az(t + 1) ≤ x(t) for t ≥ 0. Since〈x(t), y(t), c(t)〉 is optimal, we must in fact
have z(t + 1) = y(t + 1) and Az(t + 1) = x(t) for t ≥ 0, by using (L.4)(b).
Since〈x(t), y(t), c(t), p(t)〉 is competitive, condition (2.1) implies thatc(t) > 0
for t ≥ 0 by using (L.4)(c). Thusz(t) = y(t) ≥ c(t) > 0 for t ≥ 1, and
x(t) = Az(t + 1) > 0 for t ≥ 0 by using (L.5).

If 〈x(t), y(t), c(t)〉 were locally expandable, then using conditions (5.1) and
(5.3), we would get fort > T

ay(t) = az(t) = az′(t) ≥ ay′(t) = (1 + ε)ay(t)

which implies thatay(t) = 0, a contradiction sincey(t) > 0 anda � 0.
If 〈x(t), y(t), c(t)〉 were locally contractable, thenz′(t + 1) ≥ y(t + 1) from

(5.4), and using this in (5.5),Ay(t + 1) ≤ Az′(t + 1) ≤ (1 − α)x(t). But since
Ay(t + 1) = Az(t + 1) = x(t) for t ≥ 0, we must havex(t) ≤ (1 − α)x(t), so that
x(t) = 0, a contradiction.
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